Q: What is the concentration by mass percent of a hydrochloric acid solution whose density is 1.18 $\mathrm{g} / \mathrm{cm}^{3}$ and whose pH is 2.12 ?

A: First, let us calculate the concentration of HCl in the solution. From the definition of pH and the fact that HCl is a strong monoprotic acid, we have

$$
\begin{gathered}
\mathrm{pH}=-\log [\mathrm{HCl}] \\
{[\mathrm{HCl}]=10^{-2.12} \approx 0.00759 \mathrm{M}}
\end{gathered}
$$

The mass of the solute in one liter of solution can be computed by multiplying this number by the molar mass of HCl

$$
0.00759 \mathrm{~mol} / \mathrm{L} \cdot(36.46 \mathrm{~g} / \mathrm{mol})=0.277 \mathrm{~g} / \mathrm{L}
$$

We can suppose without loss of generality that our solution contains exactly $1.0 \mathrm{~L}=1000 \mathrm{~cm}^{3}$. In this case, the mass of the solute would be 0.277 g . Meanwhile, the mass of the solution as a whole would be simply its volume times its density:

$$
m_{\text {solution }}=(1000 \mathrm{~mL})(1.18 \mathrm{~g} / \mathrm{L}=1180 \mathrm{~g}
$$

Therefore the final answer given by

$$
\% \text { mass }=\frac{m_{\mathrm{HCl}}}{m_{\text {solution }}}=\frac{0.277 \mathrm{~g}}{1180 \mathrm{~g}} \approx 2.3 \times 10^{-4}=0.23 \%
$$

